
Getting new ML models in
production with ease

October 15, 2024
Ashraf Ahmed

Enterprise Architect, Sophi
aahmed@mathereconomics.com

Agenda

1. What is MLOps?

2. The main challenges of MLOps.

3. Running example: Sophi User Paywall Engine.

4. Data engineering and governance at scale.

5. Continuous model delivery at scale.

6. Experimentation and model control at scale.

7. Key takeaways.

What is MLOps?

● AI systems are software intensive systems.

● Software engineering practices should also be applied to AI systems.

● Maintainability: the simplicity with which you can repair, improve, and

comprehend software code. Begins after the product has been delivered.

● Efficiency: avoiding wastage such as defects, overproduction, and

excessive revisions.

● Correctness: when a program or system operates exactly as planned for

all of its use cases

What is MLOps?

● Software engineering practices are more difficult to apply to AI systems.

● The world is constantly changing. Models will be retrained otherwise they

might drift.

● AI code depends on data. Software engineering practices must be extended

to data ingestion, processing, and quality control.

● Training code for early models might not be optimized for large amount of

data. Requires considerations of distributed data processing.

● Correctness requires more data, more complex models, and continuous

experimentation.

What is MLOps?

● A set of practices for operating AI models in production environments.

● No agreed upon set of practices.

● Concerned with Maintainability, Efficiency, and Correctness of production AI systems.

● Is impacted by:
○ Data engineering practices and governance.

○ Software Architecture.

○ Continuous model delivery.

○ Model control and experimentation.

○ Infrastructure management: deployment, change control, and monitoring.

● Successful MLOps requires a successful strategy for all the above.

The main challenges of MLOps

The main challenges of MLOps

The main challenges of MLOps

The main challenges of MLOps: people, organization, and culture

● Solving MLOps problems is not the main focus when building AI systems.
○ The team is typically focused on the main ML/AI problem.
○ Scaling is a secondary problem. You have to first succeed to scale.

● Not all enterprises make it a strategic priority.
○ Organizations typically focus on short term goals (one or two quarters typically).
○ It is harder to quantify value of long term investments.

● Requires more resources than that is needed for solving the main ML problem.
○ Human planning fallacies.
○ Solving the main ML problem requires a different set of skills from scaling MLOps.

● Solving MLOps problems requires a strongly collaborative team.
○ Data engineers and system engineers tend to focus on engineering problems (scale, correctness, change control

…etc).
○ Data Scientists and ML practitioners tend to focus on solving the main ML problem.

● AI systems are more complex.
○ New components are needed for continuous model improvements (i.e. retraining, tuning, new

models …etc).
○ New components are needed for monitoring data and model quality.
○ Measuring the impact of any single model change is hard to predict ahead of time without

extensive large scale testing.

● Current MLOps tools, both open source and end to end systems, are not drop
in solutions for many software systems.
○ The problem of ML model tracking is treated separately from how the models are used.
○ No of-the-shelf solutions for running production and alpha models alongside each other.

● Infrastructure demands for AI systems are different from traditional software.

The main challenges of MLOps: software and infrastructure

● Does not directly benefit from all well established software engineering

practices and tools.
○ AI/ML systems quality depends on the data (and how the data is being modeled).

○ Well established software engineering assumes the system is deterministic (i.e. one could

create an exhaustive list of requires which can be tested through the development

lifecycle).

● Rapid model development and experimentation is still rather new for

many small teams due to lack of well established tools and processes.

The main challenges of MLOps: tools and processes

Running example: Sophi User Paywall Engine

● Maximize future revenue by balancing between subscriber and
advertisement revenue.

● Choose the best paywall and regwall strategies for both content and
users while honoring newsroom constraints such as a particular walling
ratio and stop rate.

● Work with different content management systems, click-stream tracking
and analytics systems, and wall experience systems.

Running example: Sophi User Paywall Engine

Running example: Sophi User Paywall Engine

Scaling out MLOps

Data engineering and governance at scale: objectives

● Data catalog vs data models: definitions vs transformations.

● Rapid data modeling: adding and changing dimensions rapidly.

● Data model tracking and versioning: how to protect downstream systems.

Data engineering and governance at scale: challenges
● Model training code is too coupled to

data processing.

● Access to data depends on how data is

stored.

● Quality of data model depends on data

scientist time and understanding of

possible defects.

● No formal process for data quality

measurement, monitoring, and lineage.

● Data modelling is the responsibility of

Data scientists.

● No formal data interface.

Data engineering and governance at scale: first attempt

Data engineering and governance at scale

Data engineering and governance at scale

Data engineering and governance at scale: semantic models

DBT Semantic Layer

Data engineering and governance at scale: semantic models

● Semantic Layers enable declarative language based definition of the

catalog.

● Semantic layers technologies do not require moving data around. All the

processing is on the semantic layer itself.

● Semantic graphs provides a one stop shop for data.

● Most semantic layer technologies support model versioning.

● Data governance first.

Data engineering and governance at scale: key takeaways

● Data models should be powered by a flexible catalog
○ Adding new metrics should be as easy as updating the catalog.

○ Automated catalog updates as part of software releases.

○ Use catalog technologies with atomic updates (such as Apache Nessie for lakehouses).

● Identify different data tiers and govern them accordingly.
○ Different tiers should meet certain data quality standards (if it is in a gold tier, you can trust it).

○ Higher tiers should use relational technology for ease of use.

● Data model governance
○ Version your data models.

○ Create anti corruption layers.

Data engineering and governance at scale: key takeaways

● Data model runtime
○ Favor technology agnostic data models (such as DBT).

○ Favor models that doesn’t require moving data around (such as DBT Semantic Layers).

○ Manage the balance between maintenance and efficiency (Snowflake vs Lakehouse)

● Data orchestration
○ Follow well established data handling practices.

○ Use technologies that is appropriate to your team (Airflow vs Mage vs Perfect vs Off-the-

shelf ETL tools).

○ Automation orchestration management either through management services or

infrastructure-as-code.

Data engineering and governance at scale: objectives

● ML Model training at scale.

● Managing training assets.

● Integration with engineering components.

● ML model tracking: versioning, tagging, and lineage.

Continuous model delivery at scale: first attempt

Continuous model delivery at scale: challenges

● Requires deliberate integration with engineering components.

● Real-time model evaluation is different from batch model evaluation.

● Safe model delivery requires model versioning

● Without a specially built model registry, model assets (config, binaries,

dataset for training, model benchmarks) might be stored in different

systems.

Continuous model delivery at scale: tooling

● Has the most well developed tools (SageMaker, Google Vertex AI, Azure

ML, MLFLow, Comet ML …etc).

● No tools for handling stream based real-time decision making systems.

● Safe delivery requires an easy to use configuration service.

● Continuous model delivery at scale requires a custom built training

system (not necessary from scratch) that matches the software

architecture.

● An important part of the overall software architecture

Continuous model delivery at scale

Continuous model delivery at scale

Continuous model delivery at scale: key takeaways

● Use a model registry. Many tools exist.

● Integrate the model registry with the rest of your infrastructure. Model

registry is not just for data science.

● Manage model training use a centralized a configuration service.

● Use model service endpoints to separate prevent leakage of ML libraries in

engineering components.

● Prevent ML systems from direct access to transactional data. All data updates

should be through engineered services.

● Establish a clearly defined boundary between ML code and other code.

Experimentation and model control at scale: objectives

● Darkmode testing

● Managing alpha and production models.

Experimentation and model control at scale: challenges

● Live experimentation requires changes to the architecture.

● Safe experimentation requires an easy to use configuration system.

● Safe experimentation requires an easy to change policy.

● Assessing experimentation results requires collection of model

performance data and integrating it with environmental data (such as the

case of visitor behavior in the Paywall case).

● No off the shelf tools for dark mode experimentation.

Experimentation and model control at sale

Experimentation and model control at sale

● Alpha models are delivered similar production (stable) models.
● Experiments are controlled using easy to use configuration services.
● Experiments are managed safely using integrated services.
● Experiments data are collected for later analytics.

Key takeaways

● Simple model delivery and operations require good architecture.
● MLOps is all about extending good software engineering practices to AI

systems.
● Current MLOps tools are limited and require many inhouse built systems

for full coverage of ML operations.
● Model governance requires a well throughout data engineering practices

and tools (Universal model specifications, platform agnostic data
modelling, semantic layers and a dynamic catalog).

● A model training harness is essential for ensuring correctness, efficiency,
and maintainability

Key takeaways cont.

● Many tools exists for supporting continuous model delivery (SageMaker,
Azure ML, Google Vertex AI, MLFlow, comet ML, …etc).

● Model delivery still requires inhouse components for scaling model
training.

● Darkmode experimentation is essential for rapid ML model development.
● Safe experimentation requires a good integrated architecture.

