Getting new ML models in
production with ease

O'g:\t hbe1£ ArS] 2054
I shra m e
Enterprise Architect, Sophi
aahmed@mathereconomics.com




Agenda

N o U A~ W N

. What is MLOps?

The main challenges of MLOps.

Running example: Sophi User Paywall Engine.
Data engineering and governance at scale.
Continuous model delivery at scale.
Experimentation and model control at scale.

Key takeaways.



What is MLOps?

e Al systems are software intensive systems.

e Software engineering practices should also be applied to Al systems.

e Maintainability: the simplicity with which you can repair, improve, and
comprehend software code. Begins after the product has been delivered.

e Efficiency: avoiding wastage such as defects, overproduction, and
excessive revisions.

e Correctness: when a program or system operates exactly as planned for

all of its use cases



What is MLOps?

e Software engineering practices are more difficult to apply to Al systems.

e The world is constantly changing. Models will be retrained otherwise they
might drift.

e Al code depends on data. Software engineering practices must be extended
to data ingestion, processing, and quality control.

e Training code for early models might not be optimized for large amount of
data. Requires considerations of distributed data processing.

e Correctness requires more data, more complex models, and continuous

experimentation.



What is MLOps?

e Aset of practices for operating Al models in production environments.
e No agreed upon set of practices.
e Concerned with Maintainability, Efficiency, and Correctness of production Al systems.

e Isimpacted by:
o Data engineering practices and governance.
o  Software Architecture.
o  Continuous model delivery.
o Model control and experimentation.

o Infrastructure management: deployment, change control, and monitoring.

e Successful MLOps requires a successful strategy for all the above.



The main challenges of MLOps

Data
Ingestion

Service
code

Databricks

(github) Notebooks

(github)

1. No deliberate integration points
between engineering and ML code
\i 2. All data processing takes place with
ML code.
Model ML Models Decision 3. ML training results are in the logs.
—1  Training (s3) . Services 4. ML Model performance data is in
< (databricks) engineering system logs.
i 5. Engineering components contain
Databases ML dependencies.
6. Bringing new models requires
changing non ML components.

Y > Raw files

\

Data
Ingestion

e

A hypothetical ML system




The main challenges of MLOps

Data
Ingestion

(github)

Notebooks

Service
code

(github)

/

Data
Ingestion

Databases

L
Model

ML Models

y

Training
(databricks)

Batch Model
Training and
inference
(databricks)

(s3)

Batch
Decisions
database

A hypothetical ML system

Y

Decision
Services

1. Waste in how data is being
modeled.

2. Batch decision system are tightly
coupled to data (and services that
depend on that data).

3. Data scientists have to deal with
how to efficiently and correctly
update databases without causing
outages.

4. Changing database technology or
schema is rather difficult.

5. System is very inflexible for
experimentation




The main challenges of MLOps

People, Organization, and Tools and Processes

Culture
‘ Software and

Infrastructure




The main challenges of MLOps: people, organization, and culture

e Solving MLOps problems is not the main focus when building Al systems.

o The team is typically focused on the main ML/AIl problem.
o Scaling is a secondary problem. You have to first succeed to scale.

e Not all enterprises make it a strategic priority.
o Organizations typically focus on short term goals (one or two quarters typically).
o lItis harder to quantify value of long term investments.
e Requires more resources than that is needed for solving the main ML problem.

o Human planning fallacies.
o  Solving the main ML problem requires a different set of skills from scaling MLOps.

e Solving MLOps problems requires a strongly collaborative team.
o Data engineers and system engineers tend to focus on engineering problems (scale, correctness, change control

...eto).
o  Data Scientists and ML practitioners tend to focus on solving the main ML problem.



The main challenges of MLOps: software and infrastructure

e Al systems are more complex.
o New components are needed for continuous model improvements (i.e. retraining, tuning, new
models ...etc).
o New components are needed for monitoring data and model quality.
o Measuring the impact of any single model change is hard to predict ahead of time without
extensive large scale testing.

e Current MLOps tools, both open source and end to end systems, are not drop
in solutions for many software systems.

o The problem of ML model tracking is treated separately from how the models are used.
o No of-the-shelf solutions for running production and alpha models alongside each other.

e Infrastructure demands for Al systems are different from traditional software.



The main challenges of MLOps: tools and processes

e Does not directly benefit from all well established software engineering
practices and tools.

o Al/ML systems quality depends on the data (and how the data is being modeled).
o Well established software engineering assumes the system is deterministic (i.e. one could

create an exhaustive list of requires which can be tested through the development

lifecycle).
e Rapid model development and experimentation is still rather new for

many small teams due to lack of well established tools and processes.



Running example: Sophi User Paywall Engine

e Maximize future revenue by balancing between subscriber and
advertisement revenue.

e Choose the best paywall and regwall strategies for both content and
users while honoring newsroom constraints such as a particular walling
ratio and stop rate.

e Work with different content management systems, click-stream tracking
and analytics systems, and wall experience systems.



Running example: Sophi User Paywall Engine

6. Click-stream
Events

\J

Click-stream
Tracking and
Analytics

7. Training &
——Performance
Data

On device

Sophi models

Visitor Devices

on device I u
B —

decision

Desktop and
Mobile

I

8. Published on
device models

Sophi

Services

2. Content (or V

4. Wall Decision

1. Content

Change———
Events

Content
Delivery
Network

3. Content

Content
Management
System

Valled Content)

5. Wall content
(if needed)

Wall
Experience
System




Running example: Sophi User Paywall Engine

Sophi Services p——
User Device Model Publish Device _
Models Delivery Models >

\
/\/\
—
Visitor Model Content
Behavior Training Models
Data N \{\
. Real-time Sophi
t .
Ii?ggrllaltjisnas Content ety Real-time _S::igzlrlf_’
Evaluator Decisions API
[}
Y
——
Model Perf th(_:y > Policies
Training
Training & Performance Data Content Change
Datasets Events

Click-stream
Tracking and
Analytics

CMS
Tracking
Integrations

On device
models

Content
Delivery
Network




Scaling out MLOps

Data and model Continuous model Experimentation and
governance delivery model control

1. Data catalog 1. Training at scale. 1. Dark mode testing.
2. Data models 2. Training asset 2. managing prod and
3. Rapid data modeling management alpha models.
4. Model tracking and 3. Integration with

versioning. engineering
5. Model building vs components.

model operations. 4. Delivery without

releases.



Data engineering and governance at scale: objectives

e Data catalog vs data models: definitions vs transformations.
e Rapid data modeling: adding and changing dimensions rapidly.

e Data model tracking and versioning: how to protect downstream systems.



Data engineering and governance at scale: challenges

e Model training code is too coupled to
data processing.
e Access to data depends on how data is

stored. .
Raw files  |a—

e Quality of data model depends on data

Model

scientist time and understanding of - -
Training

L »||| ML Models

possible defects.

e No formal process for data quality Databases [*

measurement, monitoring, and lineage.
e Data modelling is the responsibility of
Data scientists.
e No formal data interface.




Data engineering and governance at scale: first attempt

Raw files

i

Databases

/

\

~—

Data
Modeling

i

Data

Models
~—

Model
Training

e

A

A

ML Models




Data engineering and governance at scale

Raw files
Model .
Prelimina
Standardize Standard e y
format Results
|_— (Notebooks)
A
Databases
- Enriched
Enrich Data
data © Model
modeling »| High Level [« Tranmn_g L ML Models
(dbt) Models (production
— code)
Y /
Data > SeLmantic | _»| Semantic
Catalog ayer
Data Engineering




Data engineering and governance at scale

Main date Catalo: Management Data Quality I\F\A’an:tgng
c P 9 Services Monitoring P
atalog Alerts
A A
Manage Data Pipelines
data
Query . .
Catalog standardize m(t)gsetléng
A
Y
Enrich Schema rebuild Ssir:::rr:;c
nric | Upgrades models
updates

Data Pipelines




Data engineering and governance at scale: semantic models

semantic_models:

Semantic Foundation - name: transaction

model: ref('fact_transactions')
description: "Transaction fact table at the transaction level. This table contains or

defaults:
“ m m agg_t‘ime_dimens-ion: transaCtion_date

Semantic Models

) entities:
Nouns Verbs Adjectives / Adverbs .
) r J tac n Arra - name: transaction
e Have Dimensions e Calculated to o Belong to Entities type: primary
e Do the Measures Entities/Dimensions e Detail the Measures expr: transaction_id
name: customer
type: foreign
Metrics expr: customer_id
SIMPLE DERIVED

Functions of Entities, Measures, dimensions:

and Dimensions - name: transaction_date
CUMULATIVE CONVERSION type: time

type_params:
time_granularity: day

- name: transaction_location

DBT Semantic Layer typef categorical

expr: order_country

measures:
- name: transaction_total

description: "The total value of the transaction."
agg: sum




Data engineering and governance at scale: semantic models

e Semantic Layers enable declarative language based definition of the
catalog.

e Semantic layers technologies do not require moving data around. All the
processing is on the semantic layer itself.

e Semantic graphs provides a one stop shop for data.

e Most semantic layer technologies support model versioning.

e Data governance first.



Data engineering and governance at scale: key takeaways

e Data models should be powered by a flexible catalog
o Adding new metrics should be as easy as updating the catalog.

o Automated catalog updates as part of software releases.

o Use catalog technologies with atomic updates (such as Apache Nessie for lakehouses).

e Identify different data tiers and govern them accordingly.
o Different tiers should meet certain data quality standards (if it is in a gold tier, you can trust it).
o Higher tiers should use relational technology for ease of use.

e Data model governance

o Version your data models.

o Create anti corruption layers.



Data engineering and governance at scale: key takeaways

e Data model runtime

o Favor technology agnostic data models (such as DBT).
o Favor models that doesn’t require moving data around (such as DBT Semantic Layers).

o Manage the balance between maintenance and efficiency (Snowflake vs Lakehouse)

e Data orchestration

o Follow well established data handling practices.
o Use technologies that is appropriate to your team (Airflow vs Mage vs Perfect vs Off-the-

shelf ETL tools).
o Automation orchestration management either through management services or

infrastructure-as-code.



Data engineering and governance at scale: objectives

e ML Model training at scale.
e Managing training assets.
e Integration with engineering components.

e ML model tracking: versioning, tagging, and lineage.



Continuous model delivery at scale: first attempt

i

Training
Data

o SO

Model
Training

e

ML Models

Decision
Service




Continuous model delivery at scale: challenges

e Requires deliberate integration with engineering components.

e Real-time model evaluation is different from batch model evaluation.

e Safe model delivery requires model versioning

e Without a specially built model registry, model assets (config, binaries,
dataset for training, model benchmarks) might be stored in different

systems.



Continuous model delivery at scale: tooling

e Has the most well developed tools (SageMaker, Google Vertex Al, Azure
ML, MLFLow, Comet ML ...etc).

e No tools for handling stream based real-time decision making systems.

e Safe delivery requires an easy to use configuration service.

e (Continuous model delivery at scale requires a custom built training
system (not necessary from scratch) that matches the software
architecture.

e An important part of the overall software architecture



Model
Code
(github)

Model code
assets
(container

registry)

Model
Training
Harness

|
Launch training workers

Y

Training
Data

Model
Training
workers

Models,

Training Logs,
I~ Training metrics,
Model Benchmarks

Continuous model delivery at scale

Stream
based

Get Training Configuration |
Config Service
MLFlow Model
Tracking Service
Server Endpoints

Get Active
Models

Evaluate
Models

decision
service

API based
decision

Versioning
Trained

A

service

e

On device
model

Models

delivery




Continuous model delivery at scale

4
)
=
o

def prepare_data(parameters: dict, snowflake: Snowflake) —> DataFrame:

Prepare data for training the model. The prepared data will be passed to the train_model function

:param parameters: Training parameters as passed by the ML automation system from the model confid

sql :param snowflake: Snowflake connection object for loading data

__init__.py
parameters: Dict[str, Any]l = configuration.get_training_parameters(host, model_id)
logger.info(f"Loaded training parameters: {parameters}")
snowflake = Snowflake(configuration.get_secret(parameters.pop(*credentials")))
module = parameters.pop('module") # only needed for module import
data.py path = parameters.pop("path") # only needed for artifact location
if path is None:
path = model_id.replace(":", "/")
model_name = f"{model_id}-{host}"
artifact_location = f"s3://{os.environ['MLFLOW_ARTIFACT_BUCKET']}/{path}/{host}"

credentials.example.json

main.py

model.py

with start_run(
run_name=datetime.now().isoformat(timespec="seconds"),
experiment_id=get_experiment_id(model_name, artifact_location),

) as run:
log_params({"config_" + inflection.underscore(key): value for key, value in parameters.items()})
try:

.
[
B
B
B
B
B
B

parameters.py

data = import_module(f"{module}.data").prepare_data(parameters, snowflake) # prepare training data
model = import_module(f"{module}.model").train_model(data) # train model

metrics = import_module(f"{module}.model").evaluate_model(model, data) # evaluate model
logger.info(metrics)




Continuous model delivery at scale: key takeaways

e Use a model registry. Many tools exist.

e Integrate the model registry with the rest of your infrastructure. Model
registry is not just for data science.

e Manage model training use a centralized a configuration service.

e Use model service endpoints to separate prevent leakage of ML libraries in
engineering components.

e Prevent ML systems from direct access to transactional data. All data updates
should be through engineered services.

e Establish a clearly defined boundary between ML code and other code.



Experimentation and model control at scale: objectives

e Darkmode testing

e Managing alpha and production models.



Experimentation and model control at scale: challenges

e Live experimentation requires changes to the architecture.

e Safe experimentation requires an easy to use configuration system.

e Safe experimentation requires an easy to change policy.

e Assessing experimentation results requires collection of model
performance data and integrating it with environmental data (such as the
case of visitor behavior in the Paywall case).

e No off the shelf tools for dark mode experimentation.



Experimentation and model control at sale

Model
Code
(github)

Training
Data

Model code
assets
(container

registry)

Model
Training
Harness

|-«———Training Configuration.

Launch training workers

Model
Training
workers

Models, Model
Training Logs, Tracking
Training metrics, Server
Model Benchmarks
(MLFLow)

Versioning
Trained
Models

Configuration
Service

Model
Service
Endpoints
(prod)

Model
Service
Endpoints
(alpha)

Experiments
Configuration

¥~ Get Prod
decisions—_ |

Get Alpha—"|

A/decisions

Decision
Services

Get different |
decisions

Experimentation
Services

Prod + Alpha

model
decisions
data

Get
Decisions

End Users



Experimentation and model control at sale

Alpha models are delivered similar production (stable) models.
Experiments are controlled using easy to use configuration services.
Experiments are managed safely using integrated services.
Experiments data are collected for later analytics.



Key takeaways

e Simple model delivery and operations require good architecture.

e MLOps is all about extending good software engineering practices to Al
systems.

e Current MLOps tools are limited and require many inhouse built systems
for full coverage of ML operations.

e Model governance requires a well throughout data engineering practices
and tools (Universal model specifications, platform agnostic data

modelling, semantic layers and a dynamic catalog).
e A model training harness is essential for ensuring correctness, efficiency,

and maintainability



Key takeaways cont.

e Many tools exists for supporting continuous model delivery (SageMaker,
Azure ML, Google Vertex Al, MLFlow, comet ML, ...etc).

e Model delivery still requires inhouse components for scaling model
training.

e Darkmode experimentation is essential for rapid ML model development.

e Safe experimentation requires a good integrated architecture.,



