Frankfurter Allgemeine

Identify and maintain subscribers likely to leave

The F.A.Z. Churn Prevention Model

WAN-IFRA Data Science Day 2022 - Paris, October 21, 2022

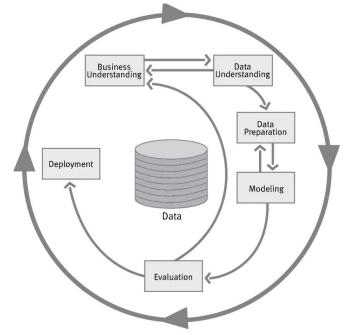
Agenda

1. Churn Prediction

- General model overview
- Technical setting
- Output files
- Variable overview

2. Churn Prevention

- Model validation
- Market test results


1. Churn Prediction

The churn prediction model identifies customers at high churn risk.

General model overview

- Churn scores are calculated for **each print** and **digital newspaper customer**
- Fully-automatized calculation incl.
 - raw data integration, transformation and aggregation
 - identification of significant parameter subset and interpretation help
 - selection of best suited data transformation steps
 - selection of best suited model
 - control instances and log file documentation
 - integration into marketing systems

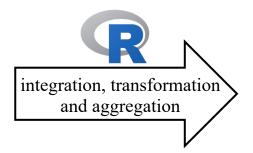
https://datasolut.com/wp-content/uploads/2019/11/CRISP-DM.png.webp

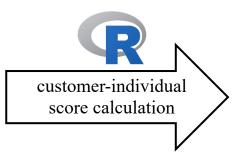
How are the churn scores calculated?

Transforming multiple data sources to one churn score table

Customer data

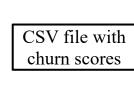
Customer service contact data

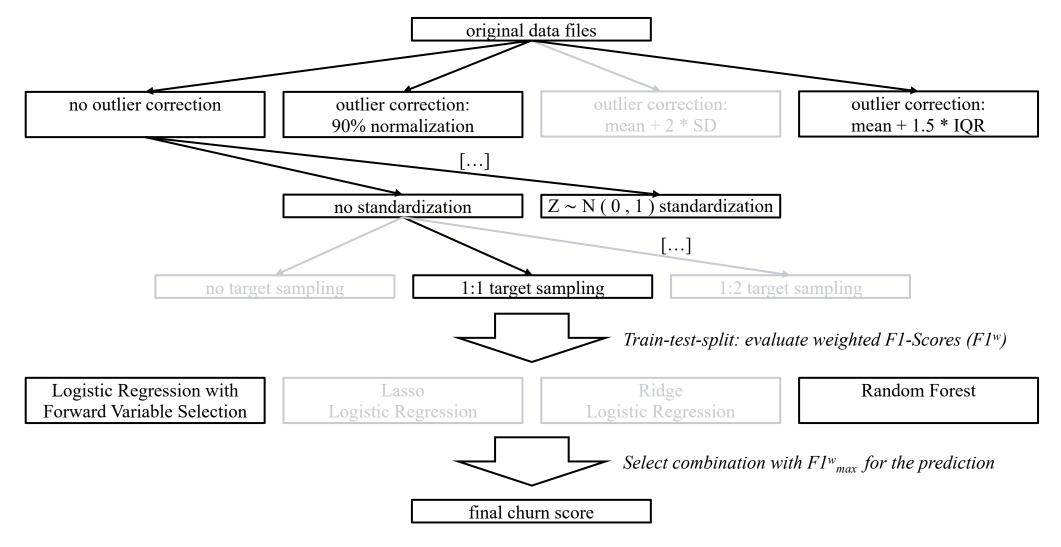



Payment data

Customer benefits portal data

Web analytics data




identification and interpretation of significant variables

Customer ID	Order ID	Churn Score
56xxxxxxxx	19xxxxx	91.5%
59xxxxxxxx	16xxxxx	69.2%
56xxxxxxxx	18xxxxx	10.9%

How does the algorithm identify the best suited model and data?

Parameter interpretation and calculation log files allow to supervise the automatized calculation output.

Output and log files

Output files include model summaries and parameter interpretation assistance

	variable interpretation		
age	Every additional year increases the probability to churn by (c.p.) (percentage) % on average.		
	A by 1% increased share of phone call requests of the total number of customer service contacts		
complaint_phone	decreases the probability to churn by (percentage) % on average.		
	Customers with a direct website order have a (c.p.) (percentage) lower churn probability		
marketing_channel	than customers with any other marketing channel order.		
	Customers with a phone opt-in consent have a (c.p.) (percentage) higher churn probability		
optin_phone	than customers without the phone opt-in.		
	Customers who pay by credit card have a (c.p.) (percentage) lower churn probability		
payment_method	than customers with other payment methods.		

Log files track warnings in the calculation progress to ensure control

	warnings				
Unbalanced_Factors	Strongly unbalanced factor variable(s) (variable names). The variable(s) will be removed from the dataset.				
Correlation	Highly correlated variable(s) (variable names). The variable(s) (variable names) will be removed from the dataset.				
Warnings_AIC.Base					
Warnings_AIC.Base (1:1 sample)	glm.fit: fitted probabilities numerically 0 or 1 occurred				
Warnings_VIF.Base	Multicollinearity problem with variable(s) (variable names). The variable(s) will be removed for parameter estimation				

More than 50 variables have been included in the churn model.

Variable overview including significant factors, F.A.Z. print, 2021

customer data

- age
- gender
- country
- region
- student (**)
- current subscription duration (**)
- subscr. duration since first contact (**)
- # current subscriptions (**)
- # subscriptions in customer history (**)
- # free samples in customer history
- # trial subs in customer history (**)
- conversion from free sample / trial sub (**)
- cross-usage (F.A.Z. vs. F.A.S. print and digital)
- opt-in consent (*)
- marketing channel (*-**)
- incentive received

payment data

- price (**)
- payment frequency (**)
- payment method (**)
- payment credibility

customer benefits portal

- # lottery participations
- # lottery wins

customer service contact data

- # of contacts/complaints (**)
- complaint type (*-**)
- complaint channel (*)

(**) p < 0.01; (*) p < 0.05

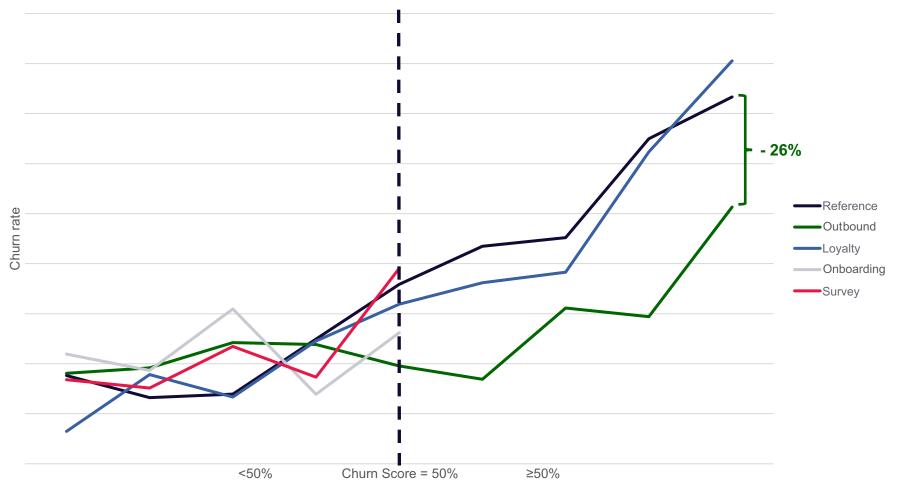
2. Churn Prevention

The model validation provided very good results for both churn- and non-churn customers on test data.

Accuracy, precision and recall results, 2021

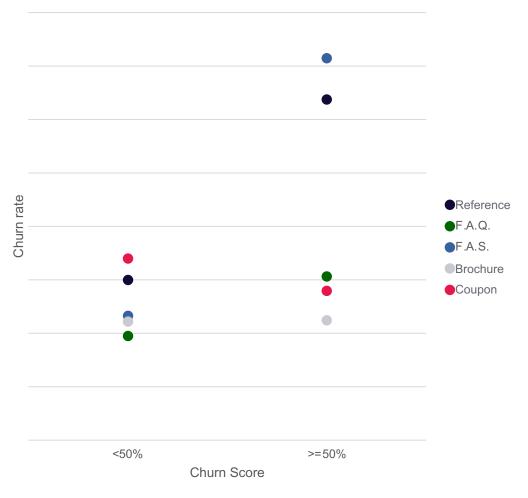
		Actual target	
		no churn	churn
Predicted target	no churn	99.6%	12.3%
	churn	0.4%	87.7%

Accuracy: 97.3%


Precision: 97.9% (churn), 97.1% (no churn)

Recall: 87.7% (churn), 99.6% (no churn)

F.A.Z. print: Churn rate comparison of several measures



The editorial department brochure and the free annual subscription of "Quarterly" significantly lowered customer churn.

F.A.Z. print: comparison of incentives by churn rate

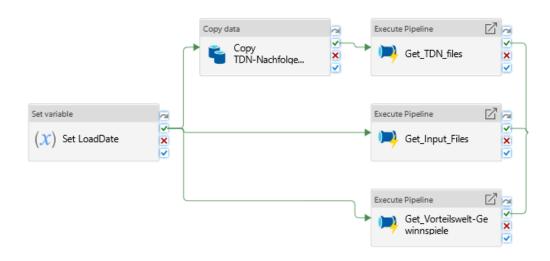
Contact

Frankfurter Allgemeine Zeitung GmbH

Fabian Wörz
Senior Data Scientist
Product + Sales
Phone +49 69 7591 1830
E-Mail f.woerz@faz.de
www.faz.net

Freiheit beginnt im Kopf. Thank you very much.

Appendix



1. Churn Prediction

Churn scores are integrated into the Salesforce Marketing Cloud as an underlying factor for marketing campaigns. Data pipeline

raw data and parameter import

More than 50 variables have been included in the churn model.

Variable overview including significant factors, F.A.Z. digital, 2021

customer data

- age (**)
- gender
- country
- region (*)
- student
- current subscription duration (**)
- subscr. duration since first contact (*)
- # current subscriptions
- # subscriptions in customer history
- # free samples in customer history
- # trial subs in customer history (**)
- conversion from free sample / trial sub
- cross-usage (F.A.Z. vs. F.A.S. print and digital)
- opt-in consent (*)
- marketing channel (*)
- incentive received

payment data

- price
- payment frequency
- payment method (*)
- payment credibility

customer benefits portal

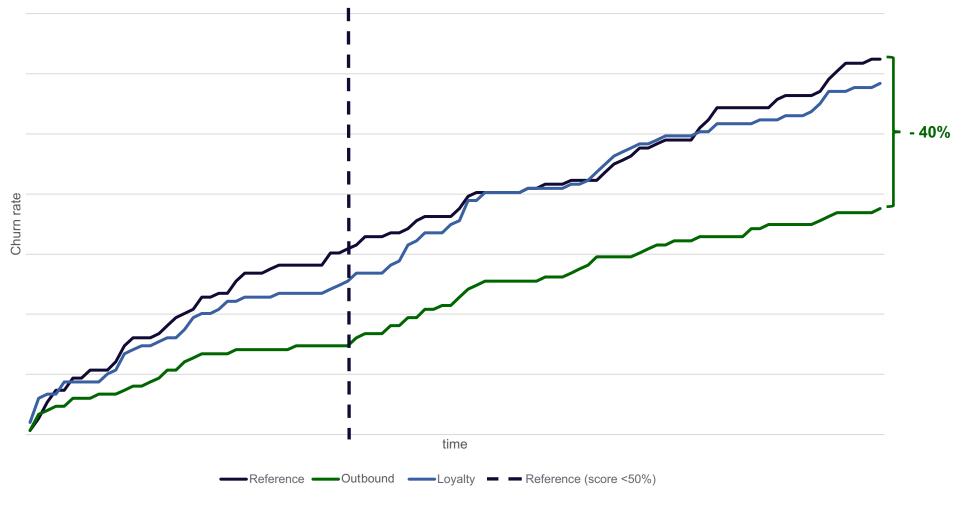
- # lottery participations
- # lottery wins

customer service contact data

- # of contacts/complaints
- complaint type (**)
- complaint channel

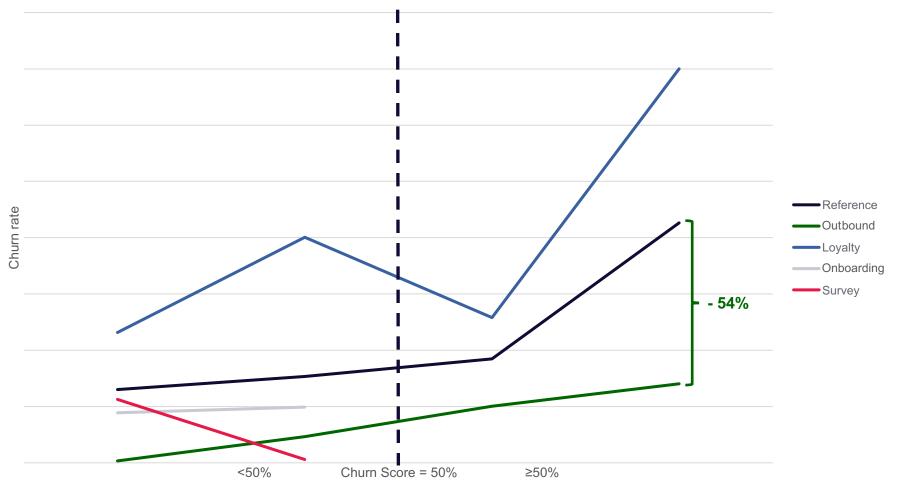
web analytics data

- Ø page views per day
 - Δ last two weeks
 - Δ last four weeks
- Ø days with ≥1 visit(s) (**)
 - Δ last two weeks (*)
 - Δ last four weeks
- Ø minutes per visit
 - Δ last two weeks
 - Δ last four weeks
- product usage (F.A.Z. vs. F.A.S.)
- multimedia usage
- max. # visits per day
- channel type
- country of access
- device (**)
- operating system

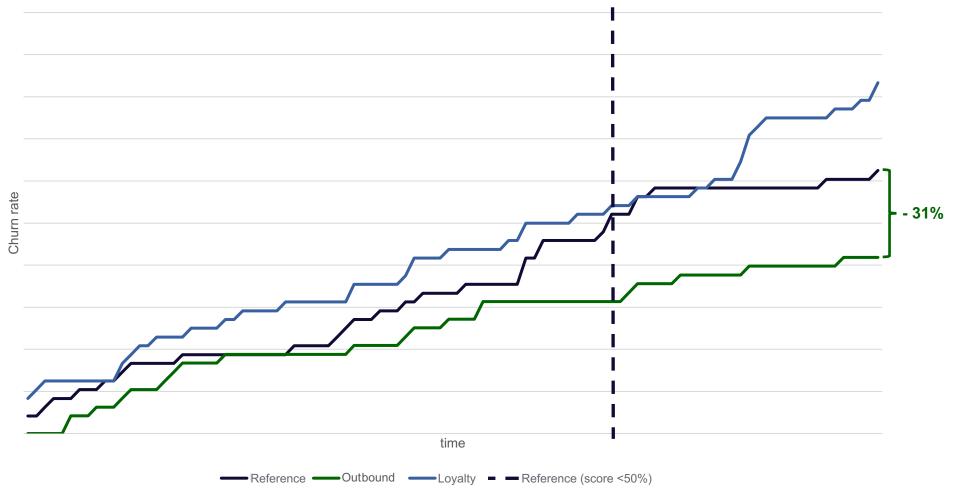


2. Churn Prevention

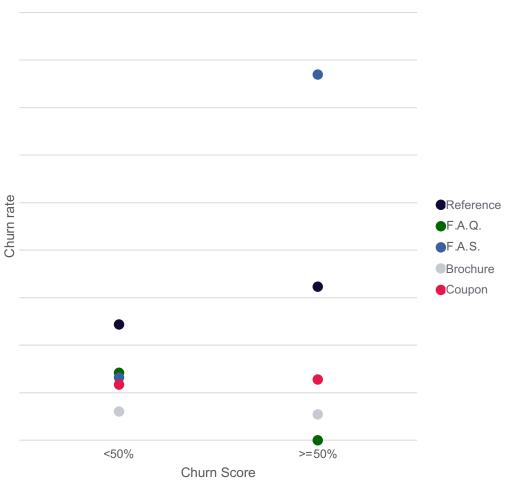
F.A.Z. print (churn probability $\geq 50\%$): churn over time



F.A.Z. digital: Churn rate comparison of several measures



F.A.Z. digital (churn probability $\geq 50\%$): churn over time



The editorial department brochure and the free annual subscription of "Quarterly" significantly lowered customer churn.

F.A.Z. digital: comparison of incentives by churn rate

